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Abstract. The asymptotic regimes of theN -site complex Toda chain (CTC) with fixed ends
related to the classical series of simple Lie algebras are classified. It is shown that the CTC
models have much richer variety of asymptotic regimes than the real Toda chain (RTC). Besides
asymptotically free propagation (the only possible regime for the RTC), CTC allows bound-state
regimes, various intermediate regimes when one (or several) group(s) of particles form bound
state(s), singular and degenerate solutions. These results can be used, for example, in describing
theN -soliton train interactions of the nonlinear Schrödinger equation. Explicit expressions for
the solutions in terms of minimal sets of scattering data are proposed for all classical series
Br–Dr .

1. Introduction

The Toda chain model [1–4]

d2qk

dt2
= exp(qk+1− qk)− exp(qk − qk−1) (1)

and its generalizations [5–15] is one of the paradigms of integrable nonlinear chains and
lattices. It has been thoroughly studied for a number of initial and boundary conditions,
such as:
• fixed ends boundary conditions, i.e.q0 = −qN+1 = ∞; this will be the case we are

interested in;
• infinite chain−∞ < k < ∞ with limk→−∞ qk = 0 and limk→∞ qk = constant, or

equivalently, limk→±∞(qk+1− qk) = 0;
• quasi-periodic boundary conditionsqk+N = qk + c, wherec = constant.
This model appeared first in describing the oscillations of a one-dimensional crystalline

lattice [1]. Since then many other applications have become known, see for example [12].
The model (1) is directly related to the algebrasl(N), whereN is the number of sites

of the chain. Most of the references cited above are devoted to the case whenqk(t) are real-
valued functions. That is why for definiteness we will call this model the real Toda chain
(RTC). Other generalizations of the RTC are related to: (a) simple Lie algebras; (b) affine
(or Kac–Moody) algebras; (c) two-dimensional generalizations.

Another possibility for generalizing the RTC, which as far as we know has not been
investigated, is the complex Toda chain (CTC) which is described by (1) with complex-
valuedqk and real time variablet . We see two main reasons for this.
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8222 V S Gerdjikov et al

(i) The generic solutions of the CTC are readily obtained from those of the RTC by
simply making all dynamical parametersqk complex. In fact, technically solving the RTC
requires additional effort to ensure that the scattering data of the Lax matrixL are real
valued.

(ii) The CTC has not been known to have physical applications.
Recently, however, it was discovered [16–18] that the CTC describes theN -soliton train

interaction of the nonlinear Schrödinger (NLS) equation in the adiabatic approximation.
More specifically, here byN -soliton train we mean the solution to the NLS equation

iuT + 1
2uxx + |u|2u(x, T ) = 0 (2)

satisfying the initial condition

u(x, 0) =
N∑
k=1

u
(1s)
k (x, 0) (3)

where

u
(1s)
k (x, T ) = 2νk exp(iφk(x, T ))

cosh(2νk(x − ξk(T ))) (4a)

φk(x, T ) = 2µk(x − ξk(T ))+ δk(T ) (4b)

ξk(x, T ) = 2µkT + ξk,0 (4c)

δk(T ) = 2(µ2
k + ν2

k )T + δk,0. (4d)

Each termu(1s)
k (x, 0) is a one-soliton solution to the NLS equation with amplitude

νk, velocity µk, initial centre-of-mass positionξk,0 and initial phaseδk,0. The adiabaticity
condition means that the solitons are well separatedξk+1,0− ξk,0� 1 and have nearly equal
initial amplitudes and velocities:

|µk,0− µj,0| � µ0 |νk,0− νj,0| � ν0 |νk+1,0− νk,0||ξk+1,0− ξk,0| � 1

where

ν0 = 1

N

N∑
s=1

νk and µ0 = 1

N

N∑
s=1

µk

are the average amplitude and velocity of the soliton train. Then the interaction can be
viewed as a ‘slow’ evolution of the 4N soliton parameters. For definiteness we also assume
that the initial positionsξk,0 of the solitons are ordered so thatξk+1,0 − ξk,0 ' r0 are of
the same order of magnitude; then only the nearest-neighbour interaction should be taken
into account. More precisely, the results in [16–18] show that this evolution is provided by
CTC wheret = 4ν0T and the complex dynamical variablesqk(t) in (1) are related to the
soliton parameters of thekth soliton by

qk(t) = −2ν0ξk(t)+ k ln 4ν2
0 + i(2µ0ξk(t)− δk(t)− δ0t + kπ). (5)

Here,ξk andδk characterize the centre-of-mass position and the phase of thekth soliton in
the train andδ0 = 2(µ2

0+ ν2
0). Such soliton trains and their asymptotic behaviour appear to

be important for the needs of soliton-based fibre optics communications.
One can also view the CTC as a model ofN ‘complex’ particles on a line, each having

two degrees of freedom. Thekth particle is described by the complex functionqk(t). The
real and the imaginary parts ofqk(t) and dqk/dt can be viewed as the dynamical variables
of kth particle. Using (5) one can relate them to the parameters of thekth soliton in the
N -soliton train (3).
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Another reason for the present paper is in the fact that, along with the similarities
between the solutions of the CTC and RTC, there are also important qualitative differences
between the asymptotic properties of these solutions.

The purpose of the present paper is to derive analytically the large time asymptotics of
the solutions to the CTC models

d2q

dt2
≡

r∑
k=1

d2qk

dt2
Hk =

∑
α∈πg

Hα e−(q,α) (6)

related to the classical series of simple Lie algebras extending the results of [19, 20].
Assuming that the reader is familiar with the theory of simple Lie algebras [21, 22] we
just recall the basic notions used here. Byπg ≡ {α1, . . . , αr} we mean the set of simple
roots of the algebrag, q(t) is a complex-valued function oft taking values in the Cartan
subalgebrah of g; Hk forms a basis inh dual to the orthonormal basis{ek}rk=1 in the root
spaceEr andr is the rank ofg; Hα =

∑r
k=1(α, ek)Hk. For more details about the structure

of the simple Lie algebras, see, for example, [21]. Equation (1) is a particular case of (6)
for the Ar series, i.e. forg ' sl(r + 1). These results, and especially those for the series
Ar , can be used as a tool for deriving the asymptotic behaviour of theN -soliton trains of
the NLS equation from the initial set of soliton parameters [16–18].

We also specify the minimal sets of scattering dataTg for L which determine uniquely
both L and the solutions of (6) and obtain explicit expressions for the solutions of (6) in
terms ofTg which are compatible with the ones in [6, 7].

2. Comparison between RTC and CTC

Since the paper of Moser [4] on the finite non-periodic real Toda lattice, several methods
have been proposed for the solution of the RTC and its generalizations for various choices
of the initial and boundary conditions, see [1–12, 23–27] and the numerous references
therein. The RTC model was also extended to indefinite metric spaces [26–28] and was
shown to possess singular solutions ‘blowing up’ for finite values oft . These models can
be viewed as special cases of the CTC in which part of theak defined later are real while
the rest are purely imaginary. A series of papers [13–15] is devoted to the thorough study
of the singularities of the solutions of the CTC (their order, positions and structure) in the
most general case when not only the dynamical parametersqk, but also the timet become
complex.

As we have already mentioned, a number of properties of the CTC are obtained trivially
from the corresponding ones of the RTC by assuming that the corresponding dynamical
variables are complex. We list the four most important properties.

(S1) The Lax representation. There are several equivalent formulations of the Lax
representation for (6). In the following we will use the ‘symmetric’ one:

L(t) =
r∑
k=1

(bkHk + ak(Eαk + E−αk )) (7a)

M(t) =
r∑
k=1

ak(Eαk − E−αk ) (7b)

where ak = 1
2 exp(−(q, αk)/2) and bk = − 1

2 dqk/dt ; for g ' sl(N) we haveak =
1
2 exp((qk+1 − qk)/2). It is well known that to each rootα ∈ 1g ⊂ Er one can put
into correspondence the elementHα ∈ h. Analogously, toq(t) = Req(t)+ i Im q(t) there
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corresponds the vectorq(t) = Req(t)+i Im q(t), whose real and imaginary parts are vectors
in Er .

(S2) The integrals of motion in involution are provided by the eigenvalues,ζk, of L.
(S3) The solutions of both the CTC and the RTC are determined by the scattering data

for L0 ≡ L(0). When the spectrum ofL0 is non-degenerate, i.e.ζk 6= ζj for k 6= j , then
this scattering data consists of

T ≡ {ζ1, . . . , ζN , r1, . . . , rN } (8)

whererk are the first components of the corresponding eigenvectorsv(k) of L0 in the typical
representationR(ω1) of g, N = dimR(ω1),

L0v
(k) = ζkv(k) (9)

or if we introduce the matrixV with Vsk = v(k)s we have

L0V = VZ Z = diag(ζ1, . . . , ζN). (10)

The quantitiesrk = v(k)1 = V1k are determined (up to an overall sign) by the normalization
conditions:

N∑
s=1

(Vsk)
2 = (v(k), v(k)) = 1 k = 1, . . . , N (11)

see [4, 11, 12]; thenV T = V −1.
(S4) Lastly, the eigenvalues ofL0 uniquely determine the asymptotic behaviour of the

solutions; these eigenvalues can be calculated directly from the initial conditions. We will
extensively use this fact for the description of the different types of asymptotic behaviour.

However, there are important differences between the RTC and CTC, in particular the
asymptotic behaviour of their solutions. Indeed, for the RTC, one has [4, 12] that both the
eigenvalues,ζk, and the coefficients,rk, are always real valued. Moreover, one can prove
that ζk 6= ζj for k 6= j , i.e. no two eigenvalues can be exactly the same. As a direct
consequence of this, it follows that the only possible asymptotic behaviour in the RTC is
an asymptotically separating, free motion of the particles (solitons).

This situation is different for the CTC. Now the eigenvaluesζk = κk+ iηk, as well as the
coefficientsrk, become complex. Furthermore, the argument of Moser cannot be applied so
one can have multiple eigenvalues. The collection of eigenvalues,ζk, still determines the
asymptotic behaviour of the solutions. In particular, it isκk that determines the asymptotic
velocity of thekth particle (soliton). For simplicity, we assumeζk 6= ζj for k 6= j . However,
this condition does not necessarily mean thatκk 6= κj . We also assume that theκks are
ordered as

κ1 6 κ2 6 · · · 6 κN . (12)

Once this is done, then for the corresponding set ofN particles (train ofN solitons), there
are three possible general configurations.

(D1) κk 6= κj for k 6= j . Since the asymptotic velocities are all different, one has the
asymptotically separating, free particles (solitons).

(D2) κ1 = κ2 = · · · = κN . In this case, allN particles (solitons) will move with the
same mean asymptotic velocity, and therefore will form a ‘bound state’. The key question
now will be the nature of the internal motions in such a bound state.

(D3) One may also have a variety of intermediate situations when only one group (or
several groups) of particles move with the same mean asymptotic velocity; then they would
form one (or several) bound state(s) and the rest of the particles will have free asymptotic
motion.
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Obviously, the cases (D2) and (D3) have no analogues in the RTC and physically are
qualitatively different from (D1). The same is also true for the special degenerate cases,
where two or more of theζks may become equal and for the singular solutions. These cases
will be considered briefly in the following.

3. Solutions of the CTC

The solutions for the CTC can be obtained formally from the well known ones for RTC
by inserting the corresponding complex parameters. We note first the solution of the RTC
for g ' sl(N), see [4, 12, 29] and references therein. Here we fix up the mass centre at the
origin by

N∑
k=1

qk(t) = 0. (13)

The velocity of the centre of masses is given by trL0 =
∑N

k=1 ζk = 0, due toL ∈ sl(N).
Then the solution has the form

qk(t) = q1(0)+ ln
Ak

Ak−1
(14)

whereA0 ≡ 1,

A1(t) =
N∑
k=1

r2
k e−2ζk t (15)

Ak(t) =
∑

16l1<l2<···<lk6N
(rl1rl2 . . . rlk )

2W 2(l1, l2, . . . , lk) e−2(ζl1+···+ζlk )t (16)

and

AN = W 2(1, 2, . . . , N)
N∏
k=1

r2
k = exp(−Nq1(0)). (17)

By W(l1, . . . , lk) we denote the Vandermonde determinant:

W(l1, . . . , lk) =
∏
s>p

s,p∈{l1,...,lk}

(2ζs − 2ζp). (18)

The solutions of (1) for real-valuedq(t) are well known in several different formulations.
We note here the formula, which effectively is contained in [6],

(q(t), ωk)− (q(0), ωk) = ln〈ωk|exp(−2L0t)|ωk〉 (19)

whereωk are the fundamental weights ofg. The fact that the large time asymptotics of
qk(t) for the g ' sl(N) RTC have the form

lim
t→±∞(qk(t)− v

±
k t) = β±k (20)

where the asymptotic velocitiesv+k = −2ζk andv−k = −2ζN+1−k, has been derived by Moser
[4]. He also evaluated the differencesβ+k − β−N−k+1 which characterize the interaction in
the RTC model.

The minimal set of scattering data forg ' sl(N) is obtained from (8) by imposing on
T the restrictions

N∑
k=1

ζk = 0 (21a)
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and
N∑
k=1

r2
k = 1. (21b)

Note that exp(−q1(0)) is expressed throughT by (17).
For the RTC related to the other classical series of Lie algebras it is known [19, 20] that

lim
t→±∞(q(t)− v

±t) = β± (22)

v± ∈ h, β± ∈ h andv+ = w0(v
−), wherew0 is the element of the Weyl group, which maps

the highest weight of each irreducible representation ofg into the corresponding lowest
weight. The action ofw0 on the simple roots is well known [21, 22]:

w0(αk) = −αk̃ (23)

wherek̃ = r−k+1 for Ar ; k̃ = k, k = 1, . . . , r for Br , Cr and, whenr is even, also forDr .
Wheng ' Dr andr is odd k̃ = k for k 6 r − 2, andw0(αr−1) = −αr , w0(αr) = −αr−1.

What we will do in the following is to: (i) specify how minimal sets of scattering data
Tg can be extracted from (8); (ii) find explicit expressions forβ±k ≡ (β±, ek) for each of
the classical Lie algebras in terms ofTg.

As in the sl(N)-case,ζk and rk are the eigenvalues and the first components of the
eigenvectors ofL0 in the typical representation, namely

L0V = V
r∑
k=1

ζkHk. (24)

The requirement thatL0 (and as consequence,L) belongs to one of the algebras in theBr
or Cr series imposes onqk the following natural restrictions,

qk = −qN−k+1 (25a)

which leads to

ak = aN−k (25b)

bk = −bN+1−k. (25c)

Thus, the solutions forg ' Br and Cr can formally be obtained from those forsl(N)
(14)–(17) by imposing on them the involutions (25a)–(25c). So we have to find out what are
the restrictions onT imposed by (25a)–(25c); this will provide us with the corresponding
minimal set of scattering dataTg, which must obviously contain only 2r parameters. It is
easy to find thatζk̄ = −ζk, where k̄ = N + 1− k, so only r of them are independent.
It is not so trivial to derive the corresponding relations which reduce the number of the
coefficientsrk. Our analysis shows that

rkrk̄ = exp(−q1(0))wk k = 1, . . . , r. (26)

Now we provide the explicit formulae forwk for each of the classical seriesBr , Cr andDr .

Br -series. N = 2r + 1. Note that in this caseζr+1 = 0 and, in addition to (26),

r2
r+1 = exp(−q1(0))

1

22r (ζ1ζ2 . . . ζr )2
(27)

and the expression forwk is provided by

wk = 1

8ζ 2
k

k−1∏
s=1

1

4ζ 2
s − 4ζ 2

k

r∏
s=k+1

1

4ζ 2
k − 4ζ 2

s

. (28)

Inserting (26)–(28) into (21b) we obtain a quadratic equation for exp(−q1(0)), so it can be
expressed in terms ofTg.
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Cr -series. N = 2r. Here

wk = − 1

4ζk

k−1∏
s=1

1

4ζ 2
s − 4ζ 2

k

r∏
s=k+1

1

4ζ 2
k − 4ζ 2

s

. (29)

As for theBr -series, exp(−q1(0)) is determined from (21b).

Dr -series. N = 2r. Here

wk =
k−1∏
s=1

1

4ζ 2
s − 4ζ 2

k

r∏
s=k+1

1

4ζ 2
k − 4ζ 2

s

. (30)

Again exp(−q1(0)) is determined from (21b) and (26). The derivation of the solution
for this series requires some additional effort. The main problem here is to find explicit
parametrization for the right-hand sides of (19) fork = r − 1 andr in terms ofrk, which
characterize the matrixV in (24) in the typical representation. Skipping the details we just
present the result, namely thatqk with k = 1, . . . , r−1 are again given by (14)–(16) where
ζk = −ζk̄ andrk are restricted by (26) and (30). Fork = r the solution forqr(t) is provided
by (14) with

Ar(t) =
∑

16l1<l2<···<lr6N
(rl1rl2 . . . rlr )

2W 2(l1, l2, . . . , lr )f
2
l1,...,lr

e−2(ζl1+···+ζlr )t (31)

and

fl1,...,lr =
1

2

(
1+ ζ1ζ2 . . . ζr

ζl1ζl2 . . . ζlr

)
. (32)

The proof of these formulae is based on detailed analysis of the properties of the fundamental
representationsR(ωk) of g and of their tensor products.

We note that these formulae are valid both for RTC and CTC. In the latter case one
should be careful to avoid the subset of singular solutions, when one or more of the functions
Ak(t) may develop zeros for finite values oft , see [13, 14, 26–28] and the discussion in
section 5.

4. Large time asymptotics

Let us now express large time asymptotics ofqk(t) in terms of the minimal set of scattering
dataTg and analyse the different types of asymptotic regimes.

As we mentioned above, we view the CTC as a model, describing non-trivial scattering
of N ‘complex particles’ so that Reqk(t) and Imqk(t) correspond to their coordinates and
‘phases’.

(D1) Asymptotically free statesκk 6= κj for k 6= j . This regime is specified by imposing on
ζk = κk + iηk, k = 1, . . . , N the so-called sorting condition:

κ1 < κ2 < · · · < κN. (33)

Now we have to expressβ±k in terms ofTg. Skipping the details we list the results for
the classical series of simple Lie algebrasAr–Dr .
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Ar -series. N = r + 1. The correspondingTg is formed from {ζk, rk}Nk=1 by imposing∑N
k=1 ζk = 0 and the normalization condition (21b). Then

β+k = q1(0)+ ln r2
k + ln

k−1∏
s=1

(2ζs − 2ζk)
2 (34a)

β−k = q1(0)+ ln r2
k̄
+ ln

N∏
s=k̄+1

(2ζs − 2ζk̄)
2 (34b)

wherek̄ = N + 1− k.
Now it is easy to calculate the shift of the relative position which is the effect of the

particle interaction. Naturally these shifts are also complex valued. Ifqk correspond to NLS
solitons thenβ+k − β−k will describe the shifts of both the relative positions and phases of
the solitons, see formula (5). Note that in the class of regular solutions the particles do not
collide, i.e. their trajectories do not intersect. Since we have ordered the particles by their
velocities assumingκ1 < κ2 < · · · < κN , so for t → ∞ the kth particle will move with
velocity −2κk. For t → −∞, however, we find that due to the interaction now thekth
particle moves with velocity−2κN−k+1 = −2κk̄. This is the so-called ‘sorting property’
characteristic for the RTC. If we identify thekth particle (soliton) by its velocity then its
shift of position will be given by the real part of the relation

β−
k̄
− β+k =

∑
j 6=k

εjk ln(2ζj − 2ζk)
2 (35)

whereεjk = 1 for j > k andεjk = −1 for j < k. The imaginary part of (35) will provide
the shift in the phase of the corresponding particle (soliton). Equation (35) is a natural
generalization of the corresponding result of Moser [4] for the RTC.

The asymptotics for theBr , Cr andDr series have the form (22)

lim
t→±∞(qk(t)± 2ζkt) = β±k (36)

with

β+k = q1(0)+ ln r2
k + ln

k−1∏
s=1

(2ζs − 2ζk)
2 (37a)

β−k = −q1(0)+ ln
w2
k

r2
k

+ ln
k−1∏
s=1

(2ζs − 2ζk)
2 (37b)

for k = 1, . . . , r.
The only exception is for the seriesDr in the case of oddr, k = r andt →−∞ which

reads

lim
t→−∞(qr(t)+ 2ζr t) = β−r (38)

where

β−r = q1(0)+ ln r2
r + ln

r−1∏
s=1

(2ζr − 2ζs̄)
2. (39)

(D2) Bound states.κ1 = κ2 = · · · = κN = 0. Now all N particles will move with the
same mean asymptotic velocity for botht →∞ and t →−∞; by Galilean transformation
this velocity can always be made zero. The individual velocities of the particles oscillate
around the common mean value. In other words, we find that allN particles generically do
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not separate but form a bound state with 2N degrees of freedom. The explicit solutions for
qk now do not simplify even fort →±∞. Nevertheless, two features are worth noting.

The solutions will be periodic functions oft provided the ratios(ηk−ηm)/(ηk−ηj ) are
rational numbers for allk, m andj . In some cases they can also become singular, see the
next section.

Important for possible physical applications is the so-called quasi-equidistant regime in
which the distances between the neighbouring particles, i.e. Re(qk+1(t) − qk(t)) oscillate
with very small amplitude; with rather good accuracy they could be considered constant.
The fact that such regimes are possible and describe adequately the behaviour of certain
NLS soliton trains is shown in [30].

(D3) Mixed regimes.As we mentioned above, there are a number of intermediate cases.
Here we start with the case whenm+ 1 out of theN particles form a bound state, i.e.

κ1 < · · · < κk = · · · = κk+m < κk+m+1 < · · · < κN (40)

andηi 6= ηj for i 6= j ∈ {k, k+1, . . . , k+m}. Skipping the details, we present the results for
the caseg ' sl(N) andm = 1, i.e. only two of the particles form a bound state. Particles
with numbers different fromk, k + 1 are free, and forkth andk + 1th we have

qk+a(t) = q1(0)+ ukt + β+k+a(t)+O(e−2Kkt ) (41)

for t →∞ and

qN−k+a(t) = q1(0)+ ukt + β−k+a(t)+O(e2Kkt ) (42)

for t →−∞. Herea = 0, 1, uk = −(ζk + ζk+1),

Kk = min(κk − κk−1, κk+2− κk+1)

and

β±k+a = β̃±k + (−1)aB±k (t)+ a ln(2ζk − 2ζk+1)
2 (43)

B±k (t) = ln(2 cos((ηk − ηk+1)t − iγ±k )) (44)

β̃±k = ln

(
rkrk+1

∏
s,k

±
(2ζs − 2ζk)(2ζs − 2ζk+1)

)
(45)

γ±k = ln

(
rk+1

rk

∏
s,k

± ζs − ζk+1

ζs − ζk

)
(46)

where
∏+
s,k ≡

∏k−1
s=1 and

∏−
s,k ≡

∏N
s=k+2.

From (43) one can find the shifts due to the interaction.

5. On the singular and degenerate solutions of CTC

It is only natural that some of the CTC solutions do not enjoy all the good properties of the
RTC ones. We have mentioned already two of them:

(P1) the elements ofTg for the RTC are real valued;
(P2) The eigenvaluesζk are pairwise different, i.e.ζk 6= ζj for k 6= j .
An immediate consequence of (P1) and (P2) is the fact that the solutionsqk(t) of the

RTC are regular functions for all finite values oft .
Generalizing to the CTC, we loose both properties (P1) and (P2). As a result, besides the

regular solutions, we also obtain singular and degenerate solutions. Obviously, all solutions
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leading to the D1 regime are regular. Even if we assume that property (P2) holds, we may
still have singular solutions.

Indeed, from equations (44)–(46) we see that in the ‘oscillating part’ of the motion
B±k (t) is periodic. If, in addition, the parameters inTg are such that Reγ±k = 0 in (46) then
Bk(t) will develop singularities for finite values oft . The same holds true for the functions
qk(t): there exist submanifolds ofTg for which qk(t) become singular for finite values oft .

As we mentioned above, this fact is compatible with the results of [13–15] who have
proposed a method for description of the varieties of singular points of the CTC. Some of
their results have been extended for the generalized RTC [27] and also for an RTC on spaces
with indefinite metric [26] and (or) with purely imaginary interaction constant [28]. Such
an RTC can be viewed as particular case of the CTC when one or several of the functions
ak(t) are purely imaginary, while the others remain real.

Let us now examine the degeneration, i.e. the case when the property (P2) is violated
and some of the eigenvalues ofL0 become equal. In [4, 31] it is proved that the spectrum
of L0 is simple for a realsl(N)-Toda chain. We state the following generalization.

Lemma 1. Let us considerL0 for the complex Toda models related to the classical series of
simple Lie algebrasAr, Br, Cr, Dr . If L0 does not contain Jordan cells, then its spectrum
is simple.

Therefore, the degeneration can take place only for CTC models and only provided
Jordan cells in the diagonalization ofL0 are present. Let us haveg ' sl(N) and letL0

have a 2× 2 Jordan cell,ζ1 = ζ2 = ζ . ThenL0 has an eigenvectorv(1) and an adjoint
eigenvectorv(2):

L0v
(1) = ζv(1) (47a)

L0v
(2) = ζv(2) + v(1) (47b)

wherev(2) can be expressed as a linear combination ofv(1)(ζ ) and its first derivative with
respect toζ . The correspondingAk(t) besides the standard exponential terms will also
contain terms of the formt e−2ζ t . More generally, if the degeneracy is of higher order, i.e.
ζ1 = · · · = ζm then we will need linear combinations ofv(1)(ζ ) and its derivatives with
respect toζ of order 1, . . . , m − 1 andAk will contain terms of the formtp e−2nζ t with
p = 1, . . . , m− 1 andn = 1, . . . ,min(k,m), see also [32].

In particular, if we have complete degeneracy (i.e. allζk are equal and equal to zero)
the solution of thesl(N)-CTC is expressed throughAk, which are polynomials of degree
k(N−k). Their coefficients depend onN−1 constantsfk, k = 1, . . . , N−1. For example,
for N = 3 andζ1 = ζ2 = ζ3 = 0 we get

A1(t) = − 1
2t

2+ f1t + f2 (48)

A2(t) = − 1
2t

2+ f1t − f 2
1 − f2 (49)

andA3 = 1. Obviously, these solutions will be regular ifAk have complex roots and will
develop singularities if one (or more) of their roots are real.

6. Conclusions

We have shown that theN -site CTC with fixed ends has a richer variety of asymptotical
regimes than the RTC. We have also evaluated the large time asymptotics ofqk(t) which
may be used in the studies ofN -soliton train interactions.
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In particular, we showed that the CTC allows solutions in which the ‘complex’
particles form regular bound states. This could be important for the applications to soliton
interactions, see for example [30]. Then the problem to determine the initial soliton
parameters (i.e. the values ofak and bk) is reduced to the analysis of the characteristic
equation forL0,

det(L0− ζ ) =
N∑
k=0

pkζ
k (50)

pN = 1, pN−1 = 0, and to the requirement that the eigenvalues ofL0 be purely imaginary.
This is an algebraic problem which often can be solved analytically. It allows one to
determine the set of initial soliton parameters in such a way that the solitons will not
only form a stable bound state, but also will propagate quasi-equidistantly. This type of
propagation is of importance for soliton-based fibre optics communications [30].

We have also studied the asymptotic regimes for the CTC related to the other simple
Lie algebras. We have proposed explicit solutions to these models in terms of the minimal
sets of scattering dataTg. The degenerate and singular solutions of the CTC which have
no counterparts in RTC are also briefly analysed and are compatible with the earlier known
results of [13–15, 26–28].
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